Numerical Solution of Delay Differential Equations via the Reproducing Kernel Hilbert Spaces Method
نویسندگان
چکیده
منابع مشابه
Solving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method
The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملReal reproducing kernel Hilbert spaces
P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملIterative Solution to Approximation in Reproducing Kernel Hilbert Spaces
A general framework for function approximation from finite data is presented based on reproducing kernel Hilbert spaces. Key results are summarised and the normal and regularised solutions are described. A potential limitation to these solutions for large data sets is the computational burden. An iterative approach to the least-squares normal solution is proposed to overcome this. Detailed proo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Research Journal of Mathematics
سال: 2020
ISSN: 2456-477X
DOI: 10.9734/arjom/2020/v16i1130237